访问手机版| 职校网| 一级建造师|二级建造师|一级消防工程师|经济师|初级会计师|中级会计师|注册会计师导航
  • 各地招聘直达:
  • 当前位置:首页 > 学历教育 > 成人高考

    高考数学常考点不等式三种出题模式是什么(高考数学常考点不等式三种出题模式及答案)

    作者:admin  来源:www.zxedu.cn  发布时间:2025-08-24 06:19:10

    一、 简单的线性规划问题

    简单的线性规划问题是高考的热点之一,是历年高考的必考内容,主要以填空题的形式考查最优解的最值类问题的求解,高考的命题主要围绕以下几个方面:

    (1) 常规的线性规划问题,即求在线性约束条件下的最值问题;

    (2) 与函数、平面向量等知识结合的最值类问题;

    (3) 求在非线性约束条件下的最值问题;

    (4) 考查线性规划问题在解决实际生活、生产实际中的应用.而其中的第(2)(3)(4)点往往是命题的创新点。

    【例1】 设函数f(θ)=?3?sin?θ+??cos?θ,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点?P(x,y)?,且0≤θ≤?π?。

    (1) 若点P的坐标为12,32,求f(θ)的值;

    (2) 若点P(x,y)为平面区域Ω:x+y≥1,x≤1,y≤1。 上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值。

    分析 第(1)问只需要运用三角函数的定义即可;第(2)问中只要先画出平面区域Ω,再根据抽画出的平面区域确定角θ的取值范围,进而转化为求f(θ)=a?sin?θ+b?cos?θ型函数的最值。

    解 (1) 由点P的坐标和三角函数的定义可得?sin?θ=32,?cos?θ=12。

    于是f(θ)=3?sin?θ+??cos?θ=?3×32+12=2。

    (2) 作出平面区域Ω (即三角形区域ABC)如图所示,其中A(1,0),B(1,1),?C(0,1)?.于是0≤θ≤?π?2,

    又f(θ)=3?sin?θ+?cos?θ=2?sin?θ+?π?6,

    且?π?6≤θ+??π?6≤?2?π?3,

    故当θ+?π?6=?π?2,即θ=?π?3时,f(θ)取得最大值,且最大值等于2;

    当θ+?π?6=?π?6,即θ=0时,f(θ)取得最小值,且最小值等于1。

    点评 本题中的最大的亮点在于以解答题的形式将线性规划中的基础内容平面区域与三角函数的求值进行了的有机综合,过去历年高考对线性规划考查中并不多见。

    二、 基本不等式

    基本不等式是不等式的重要内容,也是历年高考重点考查的知识之一。它的应用几乎涉及高中数学的所有的章节,高考命题的重点是大小判断、求最值、求范围等.大多为填空题,试题的难度不大,近几年的高考试题中也出现了不少考查基本不等式的实际应用问题。

    【例2】 心理学家研究某位学生的学习情况发现:若这位学生刚学完的知识存留量为1,则x 天后的存留量y?1=4x+4;若在t(t>0)天时进行第一次复习,则此时这似乎存留量比未复习情况下增加一倍(复习的时间忽略不计),其后存留量y?2随时间变化的曲线恰好为直线的一部分,其斜率为a(t+4)?2(?a

    (1) 若a=-1,t=5,求“二次复习最佳时机点”;

    (2) 若出现了“二次复习最佳时机点”,求a的取值范围。

    分析 关键是分析图像和理解题目所表示的含义,建立函数关系,再用基本不等式求最值。

    解 设第一次复习后的存留量与不复习的存留量之差为y,

    由题意知,y?2=a(t+4)?2(?x-?t)+8t+4(?t>?4),

    所以y=y?2-y?1=a(t+4)?2(x-t)+8t+4-4x+4(t>4)。

    当a=-1,t=5时,

    y=-1(5+4)?2(x-5)+85+4-4x+4

    =-(x+4)81-4x+4+?1≤?-2481+1=59,

    当且仅当x=14 时取等号,所以“二次复习最佳时机点”为第14天.

    (2) y=a(t+4)?2(x-t)+8t+4-4x+4?=--a(x+4)(t+4)?2-?4x+4+8t+4-a(t+4)(t+4)?2?≤-2-4a(t+4)?2+?8-at+4,当且仅当-a(x+4)(t+4)?2?=4x+4?即x=2-a(t+4)-4 时取等号,

    由题意2-a(t+4)-4>t,所以-4

    点评 基本不等式在每年的高考中几乎是从不缺席的,关键是要注意运用基本不等式的条件:一正、二定、三相等。

    三、 不等式的求解

    【例3】 对于问题:“已知关于x的不等式ax?2+bx+c>0的解集为(-1,2),解关于x的不等式ax?2-bx+c>0”,给出如下一种解法:

    参考上述解法,若关于x的不等式kx+a+x+bx+c<0的解集为-1,-13∪12,1,则关于x的不等式kxax+1+bx+1cx+1<0的解集为? ? 。

    分析 观察发现ax?2+?bx+?c>0将x换成?-x得??a(-x)?2+?b(-x)+c>0,则解集也相应变化,-x∈(-1,2),则?x∈?(-2,1),不等式kx+a+x+bx+c<0将x换成1x得不等式kxax+1+bx+1cx+1<0,故1x∈-1,-13∪12,1,分析可得答案。

    解 由ax?2+bx+c>0的解集为(-1,2),得a(-x)?2+b(-x)+c>0的解集为(?-2?,1),即关于x的不等式ax?2-bx+c>0的解集为(-2,1)。

    若关于x的不等式kx+a+x+bx+c<0的解集为-1,?-13?∪12,1

    则关于x的不等式kxax+1+bx+1cx+1<0的可看成kx+a+x+bx+c<0中的x用1x代入可得,则有1x∈?-1?,-13∪12,1从而解得x∈(-3,?-1?)∪(1,2),故答案为(-3,-1)∪(1,2)。

    点评 本题考查了类比推理,一元二次不等式以及分式不等式的求解,通过已知条件发现规律,属于探究类创新题。

    综上所述,不等式之所以成为高考中经久不息考试热点,而且创意不断常考常新.除了不等式的知识本身在中学数学中具有丰富的内涵和突出的地位外,与它和高等数学、现实生活有着紧密的关系也是重要的原因之一.在高考命题中,追寻不等式与其他重点知识的新颖巧妙的组合以及与高等数学的相互联系,挖掘不等式在现实生活和科学研究中的广泛应用,把对数学思想方法和数学应用意识以及在全新的情景中对学生数学素养等的考查赋于不等式的考查之中,往往是高考对不等式考查的一个创新点。

    牛刀小试

    1。若a>0,b>0,且函数f(x)=4x?3-ax?2-2bx+2在x=1处有极值,则ab的最大值等于.??

    2. 关于x的不等式x?2-(a+1)x+a<0的所有整数解之和为27,则实数a的取值范围是.

    【参考答案】

    1。f′(x)=12x?2-2ax-2b,∵f(x)在?x=?1处有极值,

    ∴f′(1)=0,即12-2a-?2b=?0,化简得?a+?b=6,

    ∵a>0,b>0,∴ab≤a+b2?2=9,当且仅当?a=??b=?3时,ab有最大值,最大值为9。

    2. 由x?2-(a+1)x+a<0得(x-1)(x-a)<0,由题意可知a≤1不可能,否则不能满足不等式x?2-(a+1)x+a<0的所有整数解之和为27,所以a>1,由(x-1)(x-a)<0解得?1

    编辑推荐》》高考热门专业 高考备考题库 2012年报考指南报志愿200问

    更多高考资讯及备考资料在》》

    更多新东方学校高考课程在》》报班通道

      相关文章:


      第1篇    2020攀枝花中考政治(2019攀枝花中考政治试卷)    作者:admin

       12.下图中,P是价格,Q是数量,D是需求曲线。若不考虑其他因素,下列说法正确的是:①鼓励社会资本办学对区域内办学资源的影响符合图(I)②成昆线扩能升级对攀枝花市航空客运的影响符合图(I)③玉米等饲料价格下


      第2篇    高考英语完型填空怎么提高(高三英语完形填空怎么提高)    作者:admin

       2016年高考正在紧张的备考阶段,高考英语的学习依然至关重要,不仅靠知识的积累和运用,同时也需要学习的方法和做题的技巧,为了帮助广大考生攻克高考英语的学习,高考网为大家整理了高考英语复习资料和解题技巧,以下是《2016高考英语一轮复习:提高完型填空的实战经验》,


      第3篇    高考提升语文(提高高考语文成绩的方法)    作者:admin

       高考冲刺:大幅提高高考语文成绩高考越来越近了,很多学生宁愿把时间用在数学和英语上,也不愿“浪费”在语文上。在最后100多天的时间里,要使自己的语文水平语文素养有一个大的提高,我看是不现实的,但要使自己的考试成绩提高一个层次,却完全是有可能的。回顾展望:对历年高考试卷作一回顾和梳理首先是“回顾展望”。我们必须对高考5年、10年,甚至15年、20年的试卷作一个回顾和梳理。鉴往知来,看一看这些年高考到


      第4篇    高考前失眠怎么办(高考前一段时间失眠)    作者:admin

       离高考还有最后四天,考生和家长的神经绷得越来越紧。有的考生看书看不进去,不看又担心考不好;一些家长更是无所适从干着急。临考前到底应该注意啥?最后五天应该怎样科学度过?就这些话题,6月1日,沈阳晚报、沈阳网记者采访了同泽高级中学


      第5篇    高考语文如何备考好(高考语文如何备考作文)    作者:admin

       作者:李丽平亲爱的高三同学们:时间如白驹过隙,来不及迟疑你们就已踏上高三的旅程。回首过去的日子,走过的高一、高二是那么的轻松快乐。而刚步入的高三路却无异于没有硝烟的战场,困难与压力瞬间倍增。高三将是你们人生中最重要,最浪费不起的时光。因为一旦虚掷,就会失去一个改变人生的难得机会。人们常说,生命的奇迹,是在有限的时间和空间里创造出无限的价值。同学们,高三便是你

    免责:本网站所收集的资料来源于互联网,并不代表本站赞同其观点和对其真实性负责...[更多]

    文章评论评论内容与本站立场无关

       评论摘要(共 条)
     职校网
     职校网